[APMC발표]Design of an X-band Oscillator Using Novel Miniaturized Microstrip

 1  [APMC발표]Design of an X-band Oscillator Using Novel Miniaturized Microstrip-1
 2  [APMC발표]Design of an X-band Oscillator Using Novel Miniaturized Microstrip-2
 3  [APMC발표]Design of an X-band Oscillator Using Novel Miniaturized Microstrip-3
 4  [APMC발표]Design of an X-band Oscillator Using Novel Miniaturized Microstrip-4
※ 미리보기 이미지는 최대 20페이지까지만 지원합니다.
  • 분야
  • 등록일
  • 페이지/형식
  • 구매가격
  • 적립금
자료 다운로드  네이버 로그인
소개글
[APMC발표]Design of an X-band Oscillator Using Novel Miniaturized Microstrip에 대한 자료입니다.
목차
Design of an X-band Oscillator Using Novel
Miniaturized Microstrip Hairpin Resonator

I. INTRODUCTION
II. DESIGN OF THE RESONATOR AND OSCILLATOR
III. MEASURMENT AND RESULTS
IV. CONCLUSION
REFERENCES
본문내용
hairpin resonator and applies it to the design of an X-band
oscillator. The measurement of the resonator itself shows that the
suggested resonator provides a higher loaded quality factor with
reduced circuit area compared to the conventional hairpin
resonator. The oscillators are designed to operate at 9.2 GHz
using the conventional and novel hairpin resonators, to compare
the phase noise performance. The measurement shows an output
power of 9.78 dBm and 10.87 dBm, respectively. The phase noise
of the oscillator using the novel resonator shows −101.49 dBc/Hz
at 100 kHz offset, which is better than that of the conventional
resonator by 6.17 dB.

Keywords-hairpin resonator; oscillator; phase noise; quality
factor
참고문헌
REFERENCES
[1] K. Hosoya, S. Tanaka, Y. Amamiya, T. Niwa, H. Shimawaki, and K.
Honjo, “A low phase-noise 38-GHz HBT MMIC oscillator utilizing a
novel transmission line resonator,” in 2000 IEEE MTT-S Dig., 2000,
pp.47-50.
[2] P. G. Wilson and R. D. Carver, “An easy-to-use FET DRO design
procedure suited to most CAD programs,” in 1989 IEEE MTT-S Dig.,
1989, pp. 1033-1036.
[3] C. G. Hwang, J. S. Lee, J. H. Kim, N. H. Myung and J. I. Song, “Simple
K-band MMIC VCO utilizing a miniaturized hairpin resonator and a
three termninal p-HEMT varactor with low phase noise and high output
power properties,” IEEE Microwave Wireless Compon. Lett., vol. 13,
no.6, pp. 229-231, June 2003.
[4] M. Sagawa, K. Takahashi and M. Makimoto, “Miniaturized hairpin
resonator filters and their applications to receiver front-end MIC’s.”
IEEE Trans. Microwave Theory Tech., vol. 37, no. 12, pp. 1991-1997,
Dec. 1989.
[5] F. Hwang, “Superconducting microwave bandpass filter using spiral
resonators with no air bridge,” Electron. Lett., vol. 37, pp. 361-362/ Mar.
2001.
[6] Y. T. Lee, J. S. Lim, C.S. Kim, D. Ahn, and S. W. Nam, “A compactsize
microstrip spiral resonator and its applications to microwave
oscillator,” IEEE Microwave and Wireless Components Letters, vol. 12,
no. 10, pp. 375-377, Oct. 2002.
[7] A. P. S. Khanna and Y. Garault, “Determination of loaded, unloaded,
and external quality factors of a dielectric reosonator coupled to a
microstrip line,” IEEE Trans. Microwave Theory Tech., vol. MTT-31,
pp. 261-264, Mar. 1983.
[8] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,”
in Proc. IEEE, vol. 54, Feb. 1966, pp. 329-330.
[9] A. Hajimiri and T. H. Lee, “A general thery of phase noise in electrical
oscillator,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb.
1998.
[10] T. H. Lee and A. Hajimiri, “Oscillator phase noise : A tutorial,” IEEE J.
Solid-State, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[11] A. Behagi, “Software simulation accuarately predicts the microwave Q
factors,” in Proc. IEEE, Frequency Control Symposium, pp. 1030-1034,
May 1997.