HOME > 자연과학 > 수학 > 충남대학교 농업과학연구소 > Korean Journal of Agricultural Science
Prediction of pollution loads in the Geum River upstream using the recurrent neural network algorithm -
분야 자연과학 > 수학
저자 Heesung Lim Hyunuk An Haedo Kim Jeaju Lee
발행기관 충남대학교 농업과학연구소
간행물정보 Korean Journal of Agricultural Science 2019년, Korean Journal of Agricultural Science Vol.46 No.1, 67page~78page(총12page)
파일형식 3762879 [다운로드 무료 PDF 뷰어]
판매가격 6,000원
적립금 180원 (구매자료 3% 적립)
이 자료를
논문의 미리보기 2페이지를 PDF파일로 제공합니다.
 
연관 논문
Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems -
Data-Driven Prediction Model of Indoor Air Quality by the Preprocessed Recurrent Neural Networks -
RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구 -
Recurrent Neural Network Models for Prediction of the inside Temperature and Humidity in Greenhouse
Prediction Model of Internal Temperature using Backpropagation Algorithm for Climate Control in Greenhouse -
 
 
목차
부제 :
Abstract
Introduction
Materials and methods
Results and Discussion
Conclusion
References
 
 
영문초록
The purpose of this study was to predict the water quality using the RNN (recurrent neutral network) and LSTM (long short-term memory). These are advanced forms of machine learning algorithms that are better suited for time series learning compared to artificial neural networks; however, they have not been investigated before for water quality prediction. Three water quality indexes, the BOD (biochemical oxygen demand), COD (chemical oxygen demand), and SS (suspended solids) are predicted by the RNN and LSTM. TensorFlow, an open source library developed by Google, was used to implement the machine learning algorithm. The Okcheon observation point in the Geum River basin in the Republic of Korea was selected as the target point for the prediction of the water quality. Ten years of daily observed meteorological (daily temperature and daily wind speed) and hydrological (water level and flow discharge) data were used as the inputs, and irregularly observed water quality (BOD, COD, and SS) data were used as the learning materials. The irregularly observed water quality data were converted into daily data with the linear interpolation method. The water quality after one day was predicted by the machine learning algorithm, and it was found that a water quality prediction is possible with high accuracy compared to existing physical modeling results in the prediction of the BOD, COD, and SS, which are very non-linear. The sequence length and iteration were changed to compare the performances of the algorithms.
 
 
machine learning, RNN (recurrent neural networks), Tensorflow, LSTM (long short-term memory), water pollution prediction
 
 
도움말
본 논문은 참고용 논문으로 수정 및 텍스트 복사가 되지 않습니다.
 
 
추천자료
수학과 생물학의 만남(영문)
[영문] 수학과 생물학의 만남
[서비서 산업] 교통산업의 문제점과 개선방안(영문)
[수리물리] 아프켄 솔루션(arfken solution) 5판, 6판
[공학]매트랩에 대해 가르쳐 드리죠..
[심리] 심리학 용어집(한영)
기출응용 레포트
[지리] GIS FAQ입니다.
AIS(Advanced Intelligent Systems)
열역학 솔루션(Thermodynamics: An Engineering Approach)7판
오늘 본 자료
오늘 본 자료가 없습니다.
장바구니 담은 자료
장바구니가 비어 있습니다.
이 간행물 인기자료
Prospects of Triticale as Fodder an...
Bromelain과 Zn-Methionine 혼합 급여...
야관문 ( Lespedezea cuneata G. Don)...
식재료 전처리시설의 설치방안 검토 -...
천안 배 원예농협 공동계산제 활성화 ...
이 간행물 신규자료
Effects of non-genetically modified...
Non-GMO beet pulp and canola meal c...
Strength analysis of mechanical tra...
Extended shelf-life of ‘Kumhong’ ...
Study on the reorganization of the ...
저작권 정보
본 학술논문은 ㈜누리미디어와 각 학회간에 저작권 계약이 체결된 것으로 HAPPY학술이 제공하고 있습니다. 본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
 
서비스이용약관 | 개인정보취급방침 | E-mail 수집 거부 | 제휴 및 광고문의 | FAQ
이메일 무단 수집 거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나 그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며, 이를 위반시 정보통신망법에 의해 형사처벌됨을 유념하시기 바랍니다. [게시일 2003년 4월 2일]