Multiclass Support Vector Machines with SCAD
  • 분야
  • 저자
  • 발행기관
  • 간행물정보
  • 파일형식
  •  
  • 구매가격
  • 적립금
이메일 발송  스크랩 하기
자료 다운로드  네이버 로그인
영문초록
Classification is an important research field in pattern recognition with high-dimensional predictors. The support vector machine (SVM) is a penalized feature selector and classifier. It is based on the hinge loss function, the non-convex penalty function, and the smoothly clipped absolute deviation (SCAD) suggested by Fan and Li (2001). We developed the algorithm for the multiclass SVM with the SCAD penalty function using the local quadratic approximation. For multiclass problems we compared the performance of the SVM with the L1, L2 penalty functions and the developed method.
사업자등록번호 220-87-87785 대표.신현웅 주소.서울시 서초구 방배로10길 18, 402호 대표전화.070-8809-9397
개인정보책임자.박정아 통신판매업신고번호 제2017-서울서초-1765호 이메일 help@reportshop.co.kr
copyright (c) 2009 happynlife. steel All reserved.