Original Article : Endothelium-dependent vasodilation by ferulic acid in aorta from chronic renal hypertensive rats
분야
의약학 > 내과학
저자
( Seok Choi ) , ( Hyun Il Kim ) , ( Sang Hag Park ) , ( Mi Jung Lee ) , ( Jae Yeoul Jun ) , ( Hyun Lee Kim ) , ( Jong Hoon Chung ) , ( Cheol Ho Yeum )
발행기관
대한신장학회
간행물정보
Kidney Research and Clinical Practice(구 대한신장학회지) 2012년, 제31권 제3호, 227~233페이지(총7페이지)
파일형식
18608129.pdf [무료 PDF 뷰어 다운로드]
  • ※ 본 자료는 참고용 논문으로 수정 및 텍스트 복사가 되지 않습니다.
  • 구매가격
    4,500원
    적립금
    135원 (구매자료 3% 적립)
    이메일 발송  스크랩 하기
    자료 다운로드  네이버 로그인
    영문초록
    Background: Ferulic acid (FA) is a naturally occurring nutritional compound. Although it has been shown to have antihypertensive effects, its effects on vascular function have not been intensively established. The aim of this study was to assess the vasoreactivity of FA in chronic two-kidney, one-clip (2K1C) renal hypertensive rats. Methods: Hypertension was induced in 2K1C rats by clipping the left renal artery and age-matched rats that received a sham treatment served as a control. Thoracic aortas were mounted in tissue baths to measure isometric tension. The effects of FA on vasodilatory responses were evaluated based on contractile responses induced by phenylephrine in the aortic rings obtained from both 2K1C and sham rats. Basal nitric oxide (NO) bioavailability in the aorta was determined by the contractile response induced by NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Results: FA induced concentration-dependent relaxation responses which were greater in 2K1C hypertensive rats than in sham-clipped control rats. This relaxation induced by FA was partially blocked by the removal of endothelium or by pretreating with L-NAME. L-NAME-induced contractile responses were augmented by FA in 2K1C rats, while no significant differences were noted in sham rats. FA improved acetylcholine-induced endothelium-dependent vasodilation in 2K1C rats, but not in sham rats. The simultaneous addition of hydroxyhydroquinone significantly inhibited the increase in acetylcholine-induced vasodilation by FA. Conclusion: These results suggest that FA restores endothelial function by altering the bioavailability of NO in 2K1C hypertensive rats. The results explain, in part, the mechanism underlying the vascular effects of FA in chronic renal hypertension.
    사업자등록번호 220-87-87785 대표.신현웅 주소.서울시 서초구 방배로10길 18, 402호 대표전화.070-8809-9397
    개인정보책임자.박정아 통신판매업신고번호 제2017-서울서초-1765호 이메일 help@reportshop.co.kr
    copyright (c) 2009 happynlife. steel All reserved.