영문초록
A Bayesian multiple change-point model for small data is proposed for multivariate means and is an extension of the univariate case of Cheon and Yu (2012). The proposed model requires data from a multivariate noncentral t-distribution and conjugate priors for the distributional parameters. We apply the Metropolis-Hastings-within-Gibbs Sampling algorithm to the proposed model to detecte multiple change-points. The performance of our proposed algorithm has been investigated on simulated and real dataset, Hanwoo fat content bivariate data.