골 조직공학을 위한 자유형상제작 방식의 3차원 인공지지체 제작 및 In Vitro 특성 평가
분야
의약학 > 의공학
저자
심진형 ( Jin Hyung Shim ) , 이정섭 ( Jung Seob Lee ) , 김종영 ( Jong Young Kim )
발행기관
한국조직공학·재생의학회
간행물정보
조직공학과 재생의학 2012년, 제9권 246~253페이지(총8페이지)
파일형식
2a800499.pdf [무료 PDF 뷰어 다운로드]
  • ※ 본 자료는 참고용 논문으로 수정 및 텍스트 복사가 되지 않습니다.
  • 구매가격
    4,500원
    적립금
    135원 (구매자료 3% 적립)
    이메일 발송  스크랩 하기
    자료 다운로드  네이버 로그인
    영문초록
    Tissue engineering is an emerging technique which has the potential to regenerate and repair damaged tissues or organs. In this paper, three-dimensional (3D) scaffold fabricated by solid freeform fabrication (SFF) technology and its mechanical property and cell adhesion characteristic were described. Polymer deposition system (PDS), which can dispense biodegradable polymers such as polycaprolactone (PCL) and poly (lactic-co-glycolic acid) (PLGA), was developed to fabricate a 3D scaffold for tissue engineering. In this study, PCL, PLGA, and blended PCL/PLGA were used as scaffolding materials. The dispensing conditions for each polymer were investigated using single-line test. Based on the result of single-line test, 3D scaffolds with fully interconnected 600 im pores were successfully fabricated by the PDS. Overall size of the scaffold was fixed at 25£ ̄10£ ̄4 mm which was targeted for application to spine regeneration. Effect of PCL, PLGA, and blended PCL/PLGA on compressive mechanical property of scaffolds was analyzed. In addition, in vitro cell interactions of scaffolds on MC3T3-E1 cells were evaluated using cell counting kit assay.
    사업자등록번호 220-87-87785 대표.신현웅 주소.서울시 서초구 방배로10길 18, 402호 대표전화.070-8809-9397
    개인정보책임자.박정아 통신판매업신고번호 제2017-서울서초-1765호 이메일 help@reportshop.co.kr
    copyright (c) 2009 happynlife. steel All reserved.