SVM-NN Hybrid모형을 활용한 호텔도산예측
분야
사회과학 > 관광학
저자
김수영 ( Soo Young Kim )
발행기관
한국관광학회
간행물정보
관광학연구 2011년, 제35권 제8호, 101~125페이지(총25페이지)
파일형식
19701886.pdf [무료 PDF 뷰어 다운로드]
  • ※ 본 자료는 참고용 논문으로 수정 및 텍스트 복사가 되지 않습니다.
  • 구매가격
    6,500원
    적립금
    195원 (구매자료 3% 적립)
    이메일 발송  스크랩 하기
    자료 다운로드  네이버 로그인
    영문초록
    This study proposes an integration strategy regarding the efficient prediction of hotel bankruptcy by combining data mining techniques. In particular, by combining support vector machine(SVM) and neural network(NN), SVM based NN hybrid model for hotel bankruptcy prediction is newly introduced in this study. In the experiments on Korea deluxe hotel data, SVM-NN hybrid model achieves a performance accuracy of 96.34%, which is better than that of stand-alone classifiers. The hybrid model performs better in the grey area where some bankrupt hotels appear to be less financially distressed. The results suggest that debt-burdened hotels with low profit margin and ordinary income margin as well as lower growth in asset are more likely to be candidates of bankruptcy. Accurate bankruptcy prediction usually brings into many benefits such as risk reduction in investment return, better monitoring, and an increase in profit. Limitations of the study and avenue for future research directions are also discussed at the end.
    오늘 본 자료
    더보기
    • 오늘 본 자료가 없습니다.
    본 학술논문은 한국학술정보㈜ 각 학회간에 저작권 계약이 체결된 것으로 HAPPY학술이 제공하고 있습니다.
    본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
    사업자등록번호 220-87-87785 대표.신현웅 주소.서울시 서초구 방배로10길 18, 402호 대표전화.070-8809-9397
    개인정보책임자.박정아 통신판매업신고번호 제2017-서울서초-1765호 이메일 help@reportshop.co.kr
    copyright (c) 2009 happynlife. steel All reserved.