심층신경망을 활용한 활주로 가시거리 예측 모델 개발
분야
공학 > 항공공학
저자
구성관 ( Sungkwan Ku ) , 홍석민 ( Seokmin Hong )
발행기관
한국항행학회
간행물정보
한국항행학회논문지 2017년, 제21권 제5호, 435~442페이지(총8페이지)
파일형식
82401700.pdf [무료 PDF 뷰어 다운로드]
  • ※ 본 자료는 참고용 논문으로 수정 및 텍스트 복사가 되지 않습니다.
  • 구매가격
    4,500원
    적립금
    135원 (구매자료 3% 적립)
    이메일 발송  스크랩 하기
    자료 다운로드  네이버 로그인
    국문초록
    안개 등의 영향을 받는 활주로 시정은 비행장에서 항공기 이착륙의 가능 여부를 결정하는 주요 지표중 하나이다. 운송용 항공기가 운항되는 공항의 경우 활주로 시정을 포함한 주요 국지 기상 예보를 시행하며, 이를 항공종사자가 확인할 수 있도록 하고 있다. 본 논문은 최근 영상 처리, 음성 인식, 자연어 처리 등의 다양한 분야에 적용되고 있는 심층신경망을 활주로 시정 예측에 적용하여 국지 비행장의 활주로 시정 예측 모델을 개발하고 이를 활용한 예측을 수행하였다. 적용 대상 비행장의 과거 실제 기상 관측 값을 활용하여 신경망 학습 후 시정에 대한 예측을 수행하였고, 기존 관측 데이터와 비교한 결과 비교적 정확한 예측 결과를 확인하였다. 또한 개발된 모델은 별도의 예보 기능이 없는 해당 비행장에서 참고할 수 있는 기상정보를 생성하는데 사용될 수 있을 것이다.
    영문초록
    The runway visual range affected by fog and so on is one of the important indicators to determine whether aircraft can take off and land at the airport or not. In the case of airports where transportation airplanes are operated, major weather forecasts including the runway visual range for local area have been released and provided to aviation workers for recognizing that. This paper proposes a runway visual range estimation model with a deep neural network applied recently to various fields such as image processing, speech recognition, natural language processing, etc. It is developed and implemented for estimating a runway visual range of local airport with a deep neural network. It utilizes the past actual weather observation data of the applied airfield for constituting the learning of the neural network. It can show comparatively the accurate estimation result when it compares the results with the existing observation data. The proposed model can be used to generate weather information on the airfield for which no other forecasting function is available.
    사업자등록번호 220-87-87785 대표.신현웅 주소.서울시 서초구 방배로10길 18, 402호 대표전화.070-8809-9397
    개인정보책임자.박정아 통신판매업신고번호 제2017-서울서초-1765호 이메일 help@reportshop.co.kr
    copyright (c) 2009 happynlife. steel All reserved.