기운 일반화 t 분포를 이용한 이진 데이터 회귀 분석
분야
자연과학 > 통계학
저자
김미정 ( Mijeong Kim )
발행기관
한국통계학회
간행물정보
응용통계연구 2017년, 제30권 제5호, 775~791페이지(총17페이지)
파일형식
02707107.pdf [무료 PDF 뷰어 다운로드]
  • ※ 본 자료는 참고용 논문으로 수정 및 텍스트 복사가 되지 않습니다.
  • 구매가격
    5,700원
    적립금
    171원 (구매자료 3% 적립)
    이메일 발송  스크랩 하기
    자료 다운로드  네이버 로그인
    국문초록
    이진 데이터는 일상 생활에서 자주 접할 수 있는 데이터이다. 이진 데이터를 회귀 분석하는 방법으로 로지스틱(Logistic), 프로빗(Probit), Cauchit, Complementary log-log 모형이 주로 쓰이는데, 이 방법 이외에도 Liu (2004)가 제시한 t 분포를 이용한 로빗(Robit) 모형, Kim 등 (2008)에서 제시한 일반화 t-link 모형을 이용한 방법 등이 있다. 유연한 분포를 이용하면 유연한 회귀 모형이 가능해지는 점에 착안하여, 이 논문에서는 Theodossiou (1998)에서 제시된 기운 일반화 t 분포 (Skewed Generalized t Distribution)의 이용하여 우도 함수를 최대로 하는 이진 데이터 회귀 모형을 소개한다. 기운 일반화 t 분포를 R glm 함수, R sgt 패키지를 연결하여 이 논문에서 제시한 방법을 R로 분석할 수 있는 방법을 소개하고, 피마 인디언(Pima Indian) 데이터를 분석한다.
    영문초록
    We frequently encounter binary data in real life. Logistic, Probit, Cauchit, Complementary log-log models are often used for binary data analysis. In order to analyze binary data, Liu (2004) proposed a Robit model, in which the inverse of cdf of the Student's t distribution is used as a link function. Kim et al. (2008) also proposed a generalized t-link model to make the binary regression model more exible. The more exible skewed distributions allow more exible link functions in generalized linear models. In the sense, we propose a binary data regression model using skewed generalized t distributions introduced in Theodossiou (1998). We implement R code of the proposed models using the glm function included in R base and R sgt package. We also analyze Pima Indian data using the proposed model in R.
    사업자등록번호 220-87-87785 대표.신현웅 주소.서울시 서초구 방배로10길 18, 402호 대표전화.070-8809-9397
    개인정보책임자.박정아 통신판매업신고번호 제2017-서울서초-1765호 이메일 help@reportshop.co.kr
    copyright (c) 2009 happynlife. steel All reserved.