In-Vitro, In-Vivo 동물모델에서 귀리 유래 수용성 베타-글루칸의 칼로리 제한 효과 작용기전 규명
자연과학 > 가정
강한나 ( Hanna Kang ) , 김세찬 ( Se-chan Kim ) , 강용수 ( Yong Soo Kang ) , 권영인 ( Young-in Kwon )
한국식품영양학회지 2017년, 제30권 제6호, 1222~1228페이지(총7페이지)
0o202042.pdf [무료 PDF 뷰어 다운로드]
  • ※ 본 자료는 참고용 논문으로 수정 및 텍스트 복사가 되지 않습니다.
  • 구매가격
    135원 (구매자료 3% 적립)
    이메일 발송  스크랩 하기
    자료 다운로드  네이버 로그인
    In the current study, we investigated the inhibitory activity of water soluble β-glucan from oat (Avena sativa) against various digestive enzymes such as α-glucosidase, sucrase, maltase and glucoamylase.
    Inhibition of these enzymes involved in the absorption of disaccharide can significantly decrease the post-prandial increase of blood glucose level after a mixed carbohydrate diet. The β-glucan had the highest documented rate of small intestinal sucrase inhibitory activity (2.83 mg/mL, IC50) relevant for potentially managing post-prandial hyperglycemia.
    Furthermore, we evaluated the effects of β-glucan on the level of post-prandial blood glucose in animal model.
    The post-prandial blood glucose levels were tested two hours after sucrose/starch administration, with and without β- glucan (100, and 500 mg/kg-body weight). The maximum blood glucose levels (Cmax) of β-glucan administration group were decreased by about 23% (from 219.06±27.82 to 190.44±13.18, p<0.05) and 10% (from 182.44±13.77 to 165.64±10.59, p<0.01) in starch and sucrose loading test, respectively, when compared to control in pharmacodynamics study. The β -Glucan administration significantly lowered the mean, maximum, and minimum level of post-prandial blood glucose at 30 min after meal.
    In view of the foregoing, it is felt that our findings suggest that β-glucan from oat serves to reduce post-prandial blood glucose rise secondary to slower absorption of glucose in the small intestine, via carbohydrate hydrolyzing enzymes inhibition.
    사업자등록번호 220-87-87785 대표.신현웅 주소.서울시 서초구 방배로10길 18, 402호 대표전화.070-8809-9397
    개인정보책임자.박정아 통신판매업신고번호 제2017-서울서초-1765호 이메일
    copyright (c) 2009 happynlife. steel All reserved.