[화학공학]ZnO, Al, Mg 도핑한 ZnO 나노와이어 비교및 분석

 1  [화학공학]ZnO, Al, Mg 도핑한 ZnO 나노와이어 비교및 분석-1
 2  [화학공학]ZnO, Al, Mg 도핑한 ZnO 나노와이어 비교및 분석-2
 3  [화학공학]ZnO, Al, Mg 도핑한 ZnO 나노와이어 비교및 분석-3
 4  [화학공학]ZnO, Al, Mg 도핑한 ZnO 나노와이어 비교및 분석-4
 5  [화학공학]ZnO, Al, Mg 도핑한 ZnO 나노와이어 비교및 분석-5
※ 미리보기 이미지는 최대 20페이지까지만 지원합니다.
  • 분야
  • 등록일
  • 페이지/형식
  • 구매가격
  • 적립금
자료 다운로드  네이버 로그인
소개글
[화학공학]ZnO, Al, Mg 도핑한 ZnO 나노와이어 비교및 분석에 대한 자료입니다.
목차
ABSTRACT

1. Introduction
2. Experimental
3. Result and discussion
4. Conclusion
5. References
본문내용
Fig. 1 b depicts the SEM image of the coated product, indicating that dense wire-like nanostructures were observed. Statistical analysis of many SEM images indicated that the average diameter of the produced 1D structures was in the range of 50-110nm. The inset of Fig. 1 b shows a typical closer-view SEM image of MZO-coated ZnO nanowires. It is noteworthy that the surface of the MgO-coated nanowire is not perfectly smooth.


Fig.2. shows the XRD patterns of all the film samples, whereas Fig. 2 exhibit the XRD patterns of the AZO-coated and MZO-coated ZnO nanowires sputtered respectively. The patterns exhibit four crystal phases, i.e., hexagonal ZnO (JCPDS 36-1451), hexagonal Zn (JCPDS 04-0831), cubic Au (JCPDS 04-0784), and orthorhombic Au2O3 (JCPDS 43-1039). The ZnO-associated peaks are attributed to the ZnO nanowires. In addition, we surmise that the excessive Zn in the vapor is adsorbed on the solid surface, resulting in Zn peaks [12]. The inset of Fig. 3b shows a selected SEM image of the AZO coated ZnO nanowires, suggesting that the core ZnO nanowires, including the nanoparticle-comprising tips[13], have been coated with the AZO layer.
Fig.3. EDX spectra profiles peak of all the elements. This picture shows concentration of profiles of Sputtering dopant Al and Mg as well as typical ZnO nanowire features. The EDX profiles clearly confirm the existence of Mg, Al, as well as Zn and O.
참고문헌
[1] J. Hupkes, B. Rech, S. Calnan, O. Kluth, U. Zastrow, H. Siekmann, M. Wuttig, Thin Solid Films 502 (2006) 286.

[2] C.Y. Lee, S.Y. Li, P. Lin, T.Y. Tseng, IEEE Trans. Nanotechnol. 5 (2006) 216.

[3] S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, J. Appl. Phys. 95 (2004) 3711.

[4] S.N. Bai, T.Y. Tseng, Thin Solid Films 515 (2006) 872.

[5] Y. Sun, K.E. Addison, M.R. Ashfold, Nanotechnology 18 (2007) 495601.

[6] J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, Sens. Actuators B 84 (2002) 258.

[7] D. Song, A.G. Aberle, J. Xia, Appl. Surf. Sci. 195 (2002) 291.

[8] R.R. Piticescu, R.M. Piticescu, C.J. Monty, J. Eur. Ceram. Soc. 26 (2006) 2979.

[9] M. Chen, Z.L. Pei, C. Sun, J. Gong, R.F. Huang, L.S. Wen, Mater. Sci. Eng. B 85 (2001) 212.

[10] H.W. Kim, N.H. Kim, Appl. Phys. A 80 (2005) 537.

[11] K. Shin, K. Prabakar, W.-P. Tai, J.-H. Oh, C. Lee, J. Korean Phys. Soc. 45 (2004)1288.

[12] X.N. Zhang, C.R. Li, Z. Zhang, Appl. Phys. A 82 (2006) 33.

[13] Y.J. Xing, Z.H. Xi, X.D. Zhang, J.H. Song, R.M. Wang, J. Xu, Z.Q. Xue, D.P. Yu, Appl.Phys. A 80 (2005) 1527.

[14] I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60/11
(1986).