Cell protective effect of Chromium in INS-1 cell to glucotoxicity

 1  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-1
 2  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-2
 3  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-3
 4  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-4
 5  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-5
 6  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-6
 7  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-7
 8  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-8
 9  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-9
 10  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-10
 11  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-11
 12  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-12
 13  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-13
 14  Cell protective effect of Chromium in INS-1 cell to glucotoxicity-14
※ 미리보기 이미지는 최대 20페이지까지만 지원합니다.
  • 분야
  • 등록일
  • 페이지/형식
  • 구매가격
  • 적립금
자료 다운로드  네이버 로그인
소개글
Cell protective effect of Chromium in INS-1 cell to glucotoxicity에 대한 자료입니다.
목차
서 론

재료 및 방법

1. 세포 배양
2. 포도당 독성 환경 설정
3. Insulin mRNA 변화 측정
4. CrCl3에 의한 세포 생존능 평가

5. CrCl3에 의한 세포 자멸사 평가

6. CrCl3에 의한 Insulin 분비능 평가

7. 통계적 분석

결 과

1. 포도당 독성 환경 설정
2. Insulin mRNA 변화
3. CrCl3에 의한 세포 생존능
4. CrCl3에 의한 세포 자멸사
5. CrCl3에 의한 Insulin 분비능
고 찰
요 약
참 고 문 헌

본문내용
5. CrCl3에 의한 Insulin 분비능
11 mM glucose를 처리한 군에서 insulin secretion은 25 mM glucose 자극에 대해 131% 증가했다. 33 mM glucose를 처리한 군에서는 동일한 자극에 대해 20 %의 증가를 보였고 CrCl3를 첨가한 군에서는 6 %의 증가치를 보였다.

Fig. 5. 33 mM-induced cytotoxicity in INS-1 cells. INS-1 cells exposed to various concentrations of CrCl3 (0, 1, 5, 10, 20 and 40 uM) for 48 hours. Then, the rate of apoptosis was measured by FACS.

Fig. 6. GSIS in Control, 33 mM glucoes and 33 mM glucose + 10 uM CrCl3 group. Insulin secretion dependent on glucose concentration was detected by ELISA in INS-1 cells of control and treated with 33 mM glucose and/or CrCl3 for 48 hours. GSIS, glucose-stimulated insulin secretion

고 찰
1929년 Glaser 등8)은 brewer's yeast가 인슐린의 혈당강하효과를 돕는다는 것을 발견하였다. 또 1959년에는 Torula yeast를 사용한 실험에서 glucose intolerance를 나타낸다는 것을 발견하였다. 이러한 발견들에 의해 glucose tolerance factor(GTF)를 분리하게 되었고 Cr(3)이 GTF의 활성 물질로 밝혀졌다. 9, 10)
Cr은 이제 생체에 필수적인 미량 원소로서 당대사, 지질대사, 항산화효과 등 많은 역할이 밝혀져 있다.11) Cr이 부족하게 되면 여러 가지 질병을 야기하게 되는데 제 2형 당뇨병의 증상도 여기에 해당한다. 즉, 당내성을 감소시키고 12,13) 혈청 인슐린 level을 증가시키며, 인슐린 수용체의 수도 감소시킨다.14) 또 Cr은 여러 가지 형태의 당뇨병(type 1 & 2, gestational, and steroid induced diabetes)에서 serum glucose, insulin level, HbA1C level을 개선시킨다는 보고가 있다. 15,16)
Anderson 등 17)은 제 2형 당뇨병 환자에서 19.2 uM/day의 Cr을 2, 4개월간 섭취한 결과 HbA1C, fasting glucose, 2-hr glucose, fasting and 2-hr insulin, cholesterol level이 모두 유의하게 감소한다고 보고하였다.
이제까지 밝혀진 기전으로는 인슐린 수용체 수의 증가18,19), 인슐린 수용체 kinase 활성 증가19,20,21,22), 인슐린 수용체 tyrosine phosphatase 활성 감소23,24), 세포막의 유동성 증가25, 26), 췌장 β cell의 감수성 증가 등이 있다.27,28)
최근의 연구에서는 Cr의 용량 의존 효과를 제시하였다. Anderson 등은 제 2형 당
참고문헌
1) Anderson RA, Polansky MM, Bryden NA, Roginski EE, Mertz W, Glinsmann W: Chromium supplementation of human subjects: effects on glucose, insulin, and lipid variables. metabolism. 32(9):894-9, 1983
2) Saad MJA: molecular mechanisms of insulin resistance. Brazilian J Med Biol Res 27:941-957, 1994
3) Kahn Cr: Current concepts of the molecular mechanism of insulin action Ann Rev med 36:429-451, 1985
4) Roth RA, Lui F, Chin JE:Biochemical mechanisms of insulin resistance. hormone Res 41(suppl2):51-55, 1994
5) Czech MP: Insulin action action and the regulation of hexose transport. diabetes29:399-409, 1980
6) PilchPF, Thompson PA, Czech MP: Coordinate modulation of D-glucose transport activity and bilayer fluidity in plasma membrane derived from control and insulin-treated adipocytes. proc Natl Acad Sci USA 77:915-918, 1980
7) Lawerence MC, Bhatt HS, Watterson JM, Eaasom RA: Regulation of insulin gene transcription by a Ca2+ responsive pathway involving calcineurin and nuclear factor of activated T cell. Mol Endocinol 15:1758-67,2001
8) Glaser E, Halpern G: Ulber Die Aktivierung des Insulins Durch Hefeprebasft. Biochem Z 1929;207:377-383.
9) Mertz W, Schwarz K: Relation of glucose tolerance factor to impaired intravenous glucose tolerance of rats on stock diets. Am J Physiol 1959;196:614-618
10) Schwartz K, Mertz W.A: Glucose tolerance factor and its differentiation from factor 3. Arch Biochem Biophys 1957;72:515-518
11) Anderson RA, Roussel AM: Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr, 2001 Jun; 20(3): 212-8
12) Anderson RA: Recent advances in the clinical and biochemical effects of chromium deficiency. In Prasad AS (ed):"Essential and Toxic Trace Elements in Human health and disease" New York;Wiley Liss 1993; 221-234
13) Mertz W: Chromium in human nutrition: a review. J Nutr 1993; 123: 626-633
14) Anderson RA, Polansky MM, Bryden NA, et al.: Effects of supplemental chromium on patients with symptoms of reactive hypoglycemia. Metabolism 1987;36:351-355
15) Vincent JB: The biochemistry of Chromium. J Nutr. 2000; 130(4):715-8
16) Anderson RA: Chromium in the prevention and control of diabetes. Diabetes Metab. 2000; 26(1):22-7
17) Anderson RA: Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes. 1997 Nov; 46(11): 1786-91
18) Anderson RA, Polansky MM, Bryden NA, Roginski EE, Mertz W, Glinsmann W: Chromium supplementation of human subjects: effects on glucose, insulin, and lipid variables. metabolism. 1983; 32(9):894-9
19) Kahn Cr: Current concepts of the molecular mechanism of insulin action Ann Rev med 1985; 36:429-451
20) Saad MJA: molecular mechanisms of insulin resistance. Brazilian J Med Biol Res 1994; 27:941-957
21). Roth RA, Lui F, Chin JE:Biochemical mechanisms of insulin resistance. hormone Res 1994; 41(l2):51-55
22) Davis CM, Vincent JB: Chromium oligopepetide activates insulin receptor kinase activity. Biochemistry 1997; 36:4382-4385
23) Imparl-Radosevich J, Deas S, Polansky MM, Bacdke DA, Ingrebritson TS, Anderson RA, Graves DJ: Regulation of phosphotyrosine tyrosin phosphatase(PTP-1) and insulin receptor kinase by fractions from cinnamon:implications for cinnamon regulation of insulin signalling. Hormone Research (in press), unpublished observation
24) Davis CM, Sumal KH, Vincent JB: A biologically active form of chromium may activate a memebrane phosphtyrosine phosphatase(PTP). Biochemistry 1996;35:12963-1299
25) Czech MP: Insulin action action and the regulation of hexose transport. Diabetes 1980; 29:399-409
26) PilchPF, Thompson PA, Czech MP: Coordinate modulation of D-glucose transport activity and bilayer fluidity in plasma membrane derived from control and insulin-treated adipocytes. Proc Natl Acad Sci USA 1980 77:915-918
27) Potter JF, Levin P, Anderson RA, Freiberg JM, Andres R, Elahi D: Glucose metabolisim in glucose-intolerent older people during chromium supplementation. Metabolism 1985; 34:199-204
28) Hübner G, Noack K, Zühlke H, Hartmann K : Influence of trivalent chromium on the beta-cell function. Exp Clin Endocrinol. 1989; 93(2-3):293-8
29) Ravina A, Slezak L, Rubal A, et al.: Clinical use of the trace element chromium(Ⅲ) in the treatment of diabetes mellitus. J trace Elem Exp Med 1995; 8:183-190
30) Fox GN, Sabovic Z.: Chromium picolinate supplementation for diabetes mellitus. J Fam Pract 1998;46:83-86
31) Stearns DM, Belbruno JJ, Wetterhahn KE.: A prediction of chromium(Ⅲ) accumulation in humans from chromium dietary supplements. FASEB J 1995;9:1650-1657
32) Stearns DM, Wise JP Sr, Patierno SR, Wetterhahn KE.: Chromium(Ⅲ) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J 1995;9:1643-1648
33) Kleefstra N, Houweling ST, Bakker SJ, Verhoeven S, Gans RO, Meyboom-de Jong B, Bilo HJ: Chromium treatment has no effect in patients with type 2 diabetes in a we