[공학]연료 전지의 원리와 실용화 대책

 1  [공학]연료 전지의 원리와 실용화 대책-1
 2  [공학]연료 전지의 원리와 실용화 대책-2
 3  [공학]연료 전지의 원리와 실용화 대책-3
 4  [공학]연료 전지의 원리와 실용화 대책-4
 5  [공학]연료 전지의 원리와 실용화 대책-5
 6  [공학]연료 전지의 원리와 실용화 대책-6
※ 미리보기 이미지는 최대 20페이지까지만 지원합니다.
  • 분야
  • 등록일
  • 페이지/형식
  • 구매가격
  • 적립금
자료 다운로드  네이버 로그인
소개글
[공학]연료 전지의 원리와 실용화 대책에 대한 자료입니다.
목차
- 연료전지의 원리
-연료 전지 실용화를 위한 대책
앞으로의 전망
본문내용
이것이 바로 연료전지에서 사용될 수소를 얻을 수 있는 방법이다. 천연가스, 메탄올, 석탄가스 등과 같은 화석연료와 수증기가 만나게 되면 수소, 일산화탄소, 이산화탄소가 생성된다. 이 중에서 수소만을 골라내어 연료전지의 연료극에 수소를 공급한다. 이렇게 만들어진 수소를 밑에 있는 단위전지의 연료극에 공급해 주는 것이다. 연료전지에서 전기를 일으키는 하나의 기본체인 셀(cell)의 모양이다. 연료극과 공기극에 각각 수소와 공기(산소)가 공급되어 전해질과 반응하여 이온을 형성한다. 이렇게 생성된 이온이 전기화학반응을 일으켜 물을 형성하는 과정에서 연료극에서 전자가 생성되어 공기극으로 이동하면서 결국 전기를 발생시킨다. 한 개의 셀(cell)에서 전기가 발생하지만 이 전기의 양은 우리가 실생활에 사용하기에는 매우 적은 양이므로 셀(cell)들을 여러 개 포개서 많은 양의 전기에너지로 사용하게 된다. 여러 개의 셀(cell)들을 모아 놓은 것을 스택(Stack)이라고 한다.




좀더 자세히 원리를 살펴보자. 각 전극에서 일어나는 반응식과 총 반응식은 다음과 같다.
Anode : H2(g) → 2H+ + 2e- (1)
Cathode : 1/2O2(g) + 2H+ + 2e- → H2O(ℓ) (2)
총반응식 : H2(g) + 1/2O2(g) → H2O(ℓ)

하나의 화학반응에서 얻어지는 최대 에너지는 Gibbs 자유에너지 변화 ΔG와 관계가 있다.
ΔG=ΔH - TΔS Gibbs-Helmholtz Eq. (1)

여기에서 ΔH : 반응 Enthalpy 변화, ΔS : 반응 Entropy 변화, T : 절대온도(K)이다. 25℃의 온도와 1atm의 가스압력에서 수소와 산소가 반응할 때의 Gibbs 자유에너지 변화 ΔG。298은 다음과 같다.
H2(g) + 1/2O2(g) → H2O(ℓ) ΔG。298=-237.19 kJ/mol

여기에서 ΔG。298가 음의 값을 나타내는 것은 시스템으로부터 에너지를 방출하는 것을 의미한다. 수소가 연소되어 열을 얻는 것과 같이 수소의 에너지 함량(여기의 반응 Enthalpy는 연소 Enthalpy 또는 Heat value, Lower Heating Valve(LHV))이 연료전지의 전기에너지로 모두 전환되지는 않는다. n을 반응식당 교환되는 전자의 수라고 하면 아래의 식으로부터 평형상태에서의 Cell Potential을 얻을 수 있다.