[반도체] Ion Implantation

 1  [반도체] Ion Implantation-1
 2  [반도체] Ion Implantation-2
 3  [반도체] Ion Implantation-3
 4  [반도체] Ion Implantation-4
 5  [반도체] Ion Implantation-5
 6  [반도체] Ion Implantation-6
 7  [반도체] Ion Implantation-7
 8  [반도체] Ion Implantation-8
 9  [반도체] Ion Implantation-9
 10  [반도체] Ion Implantation-10
 11  [반도체] Ion Implantation-11
 12  [반도체] Ion Implantation-12
 13  [반도체] Ion Implantation-13
 14  [반도체] Ion Implantation-14
 15  [반도체] Ion Implantation-15
 16  [반도체] Ion Implantation-16
 17  [반도체] Ion Implantation-17
 18  [반도체] Ion Implantation-18
 19  [반도체] Ion Implantation-19
 20  [반도체] Ion Implantation-20
※ 미리보기 이미지는 최대 20페이지까지만 지원합니다.
  • 분야
  • 등록일
  • 페이지/형식
  • 구매가격
  • 적립금
자료 다운로드  네이버 로그인
소개글
[반도체] Ion Implantation에 대한 자료입니다.
목차
Introduction
Ion Implantation
Ion Implanter
Summary
Reference
본문내용
Ion Implantation
Ionized dopant atoms are physically forced into the silicon crystal by accelerating them through high potentials (3 kV- 3 MV) toward the silicon wafer.
– Mass separator allows each implanter to run multiple
processes (B, P, BF2, As...)
– Low temperature (room temperature ~200 °C)
• can use photoresist as a mask
– Needs to be followed by an anneal
• heal crystal damage
• activate dopant (put in substitutional sites)
• standard furnace or rapid thermal processor (RTP)
– Dose (Q0) can be monitored in situ


Process Comparison
Thermal Diffusion Ion Implantation



Inexpensive equipment
• One process/furnace tube
• Uniformity ± 5-10%
• Need hard mask (SiO2 or Si3N4)
• Thermodynamically controlled
• Dopants electrically active


Very expensive equipment
• Multiple processes per tool
– mass separation
• Uniformity ± 1%
• Room temperature to 200 °C
– can use photoresist mask
• Need anneal step
– heal crystal damage
– activate dopants