[응용열역학] AMEsim programing

 1  [응용열역학] AMEsim programing-1
 2  [응용열역학] AMEsim programing-2
 3  [응용열역학] AMEsim programing-3
 4  [응용열역학] AMEsim programing-4
 5  [응용열역학] AMEsim programing-5
 6  [응용열역학] AMEsim programing-6
 7  [응용열역학] AMEsim programing-7
 8  [응용열역학] AMEsim programing-8
 9  [응용열역학] AMEsim programing-9
 10  [응용열역학] AMEsim programing-10
 11  [응용열역학] AMEsim programing-11
 12  [응용열역학] AMEsim programing-12
※ 미리보기 이미지는 최대 20페이지까지만 지원합니다.
  • 분야
  • 등록일
  • 페이지/형식
  • 구매가격
  • 적립금
자료 다운로드  네이버 로그인
소개글
[응용열역학] AMEsim programing에 대한 자료입니다.
목차
CONTENTS


1. Rankine cycle

2 . Solve the problems (10-1,2)

3. AMEsim

4. AMEsim programing

5. Result of AMEsim

6. Discussion

7. Reference
본문내용
Process 4-1: The wet vapor then enters a condenser where it is condensed at a constant pressure to become a saturated liquid.

In an ideal Rankine cycle the pump and turbine would be , i.e., the pump and turbine would generate no entropy and hence maximize the net work output. Processes 1-2 and 3-4 would be represented by vertical lines on the T-S diagram and more closely resemble that of the Carnot cycle. The Rankine cycle shown here prevents the vapor ending up in the superheat region after the expansion in the turbine,

Actual Rankine cycle
In a real Rankine cycle, the compression by the pump and the expansion in the turbine are not isentropic. In other words, these processes are non-reversible and entropy is increased during the two processes. This somewhat increases the power required by the pump and decreases the power generated by the turbine.

In particular the efficiency of the steam turbine will be limited
참고문헌
7. Reference

http://en.wikipedia.org/wiki/Rankine_cycle
http://vitalmanagementservices.com
http://www.chpcenternw.org/AboutCleanEnergy/WasteHeatRecovery/HeatToPowerTechnologies.aspx
http://blog.naver.com/nazzippp?Redirect=Log&logNo=10095433424